Newton-Type Methods for Optimization Problems without Constraint Qualifications
نویسندگان
چکیده
We consider equality-constrained optimization problems, where a given solution may not satisfy any constraint qualification but satisfies the standard second-order sufficient condition for optimality. Based on local identification of the rank of the constraints degeneracy via the singular-value decomposition, we derive a modified primal-dual optimality system whose solution is locally unique, nondegenerate, and thus can be found by standard Newton-type techniques. Using identification of active constraints, we further extend our approach to mixed equalityand inequality-constrained problems, and to mathematical programs with complementarity constraints (MPCC). In particular, for MPCC we obtain a local algorithm with quadratic convergence under the second-order sufficient condition only, without any constraint qualifications, not even the special MPCC constraint qualifications.
منابع مشابه
On Sequential Optimality Conditions without Constraint Qualifications for Nonlinear Programming with Nonsmooth Convex Objective Functions
Sequential optimality conditions provide adequate theoretical tools to justify stopping criteria for nonlinear programming solvers. Here, nonsmooth approximate gradient projection and complementary approximate Karush-Kuhn-Tucker conditions are presented. These sequential optimality conditions are satisfied by local minimizers of optimization problems independently of the fulfillment of constrai...
متن کاملExamples of dual behaviour of Newton-type methods on optimization problems with degenerate constraints
We discuss possible scenarios of behaviour of the dual part of sequences generated by primal-dual Newton-type methods when applied to optimization problems with nonunique multipliers associated to a solution. Those scenarios are: (a) failure of convergence of the dual sequence; (b) convergence to a so-called critical multiplier (which, in particular, violates some second-order sufficient condit...
متن کاملActive-set Newton methods for mathematical programs with vanishing constraints
Mathematical programs with vanishing constraints constitute a new class of difficult optimization problems with important applications in optimal topology design of mechanical structures. Vanishing constraints usually violate standard constraint qualifications, which gives rise to serious difficulties in theoretical and numerical treatment of these problems. In this work, we suggest several glo...
متن کاملStabilized Sequential Quadratic Programming for Optimization and a Stabilized Newton-type Method for Variational Problems without Constraint Qualifications∗
The stabilized version of the sequential quadratic programming algorithm (sSQP) had been developed in order to achieve fast convergence despite possible degeneracy of constraints of optimization problems, when the Lagrange multipliers associated to a solution are not unique. Superlinear convergence of sSQP had been previously established under the secondorder sufficient condition for optimality...
متن کاملConstraint Qualifications and KKT Conditions for Bilevel Programming Problems
In this paper we consider the bilevel programming problem (BLPP), which is a sequence of two optimization problems where the constraint region of the upper-level problem is determined implicitly by the solution set to the lower-level problem. We extend well-known constraint qualifications for nonlinear programming problems such as the Abadie constraint qualification, the Kuhn-Tucker constraint ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal on Optimization
دوره 15 شماره
صفحات -
تاریخ انتشار 2004